
Space Tolerant CNN FPGA Deployment
V1.0 - 26th April 2021

Space Tolerant CNN
FPGA Deployment

Part 1: An Open Source DPU Layer

A. C. McCormick

Space Tolerant CNN FPGA Deployment, Part 1
This paper is the first part of a four part series of white papers providing an educational overview of the issues
surrounding the deployment of Convolutional Neural Network solutions on FPGAs in a radiation susceptible
environment. This paper builds on the Open Source code documented in our previous white paper [1], and it is
recommended that that is consulted for an introduction to Convolutional Neural Network concepts in the context
of FPGAs. This first part documents a practical CNN processing core, which can be used to implement a wide
range of CNN solutions. The second part, will discuss the Space Hardening of this core, adding in Triple Mode
Redundancy for radiation effect tolerance to control path circuitry. The third part will document the higher level
control structures necessary to move data to and from the CNN core and dynamically reconfigure its operation to
match the functional requirements of a part of a network. The fourth part of this series will document the
deployment of this FPGA solution on the Alpha Data ADA-SDEV-KIT3 Space Development kit for the Xilinx
XQRKU060 FPGA device.

An open Source DPU Layer
Our previous white paper covered the full implementation of multi-layer neural networks within FPGAs as this
provides the lowest latency and is the most memory bandwidth efficient approach. However a quick analysis of
the memory footprint of many popular CNN based AI models reveals that except for a small number of mobile
application focussed solutions, these cannot fit in their entirety into a single Space deployable FPGA. The most
capable of these, the Xilinx XQRKU060, although 5-10x the size and performance of previous generations of
Space deployable devices is still only around 20% of the size of the top end data centre deployable FPGAs.
Therefore a solution must be deployed that allows the AI model representation to be moved in and out of the
FPGA dynamically allowing the same logic to implement the different layers of the network in a time division
multiplexed order. A single layer DPU (data processing unit) which sequentially loads the configuration for each
layer and then processes the data for that layer (possibly batching a number of frames for efficiency) is therefore
an appropriate option to deploy here.

In this part of the paper, the open source code for a versatile single layer DPU will be described, including the
key components and system structure. Accurate simulation is essential for reliable FPGA deployment, and a
significant proportion of this section will be devoted to the test bench structure, and especially to the functions
which allow the configuration of the DPU to be driven by Caffe files from a model library such as those in the
Xilinx Vitis AI Model Zoo. The choice of DPU size is a tricky balance. Too large a layer may be inefficient for
CNN layers with lower numbers of neurons. Too small a layer will not allow a sufficient number of weights to be
cached in the layer to allow non-memory bound efficient processing. However as the DPU must implement
many different sized layers on the same hardware a compromise size must be selected.

Page 1ad-an-0116_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 26th April 2021

Structure of the Open Source DPU
Figure 1 shows the general structure of the DPU core. This core processing unit has at its heart an array of
neurons which can be dynamically configured with weights and biases. The ReLU non-linearity can be optionally
applied to this cores output data stream. On its own, this neuron layer can implement a 1x1 convolutional layer
or a fully connected layer. For most image based CNN processing, the input data stream consists of a sequence
of pixels, with a number of features per pixel. Each neuron computes the scalar product of these features with
each neuron weight to generate a new feature per neuron for that pixel in the next layer. There may be a
non-linear transformation applied to this product. The number of active neurons in the layer can be selected
dynamically, as can the number of weights pre neuron, stored in local memory within the core. This allows the
layer to implement a variety of different CNN layer structures. It will operate most efficiently when all neurons are
in use, and can support larger layers through reconfiguration with new coefficients and re-sending the previous
layer data.

Zero Pad 1x1

3x3 Convolution Mask
Delay Buffer

128 Programmable Neuron Layer
ReLU Optional

2x2 Delay Buffer,
 Max Pooling

1x1 Conv

No MaxPool

Input Feature Stream

Output Feature Stream

Weights

Figure 1 : Fixed Point Neuron Implementation

Surrounding this core layer, there are some optional transforms which can be enabled in the data flow path. On
the input side there are some transforms to support 3x3 convolution. In comparison to the previous open source
library code, this feature buffer block only supports 3x3 convoluton and is not configurable for larger masks, as
these appear to have fallen out of fashion with newer CNN models. The feature buffer is however now
dynamically programmable and can support run-time configurable changes in image size and number of
features. A helper zero padding block adds a surrounding layer of zeros to make the output image size match
the input image size if required. The buffer also supports an optional stride of 2 for layers that require that to be
implemented without the max pool operation.

Page 2 ad-an-0116_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 26th April 2021

Also before the CNN core layer, there is a rate control block, which limits the input data rate if it is going to cause
an overflow in the processing. The neuron output rate is currently limited to just 1 neuron output every 2 clock
cycles, which helps keep the circuit efficient for pipelining and maximising FPGA clock rate, but however might
not be optimal for all CNN configurations. With layers with a lot of features, especially with a 3x3 mask, the input
rate will always be the bottleneck, but for some early layers the CNN core might have to operate sub-optimally
due to this data rate limitation. If this was observed to be a major limitation on processing efficiency, system wide,
the core could use a more parallel implementation of its output logic to work round the bottleneck, however the
serial stream output is kept here for now for code readability.

On the output of the core CNN layer is an optional max pooling operation. This selects the maximum value from
each 2x2 pixel block in the image, reducing the resolution of the output layer by a factor of 2 in each dimension.
Again the stride and window size is fixed to 2x2, but the image width and number of features is dynamically
programmable.

DPU Size Choices for YoloV3 DK Tiny Implementation
To test out the capabilities of this DPU layer, a small model from the Xilinx Vitis AI Model Zoo was chosen:
dk_tiny-yolov3_416_416. This model is used to provide the example layer structure, and weights and biases for
the simulation. This model appears to be a cut down version of the YoloV3 model, but with only outputs at 2
scales used for object classification and bounding box description, with the Layers identified as 14 and 21
containing the output information.

This model consists of 13 CNN layers as shown in table 1.

Layer Neurons Conv Input Input Size Output Size ReLU Maxpool

Layer 0/1 16 3x3 input 416x416x3 208x208x16 Y 2x2

Layer 2/3 32 3x3 L0/1 208x208x16 104x104x32 Y 2x2

Layer 4/5 64 3x3 L2/3 104x104x32 52x52x64 Y 2x2

Layer 6/7 128 3x3 L4/5 52x52x64 26x26x128 Y 2x2

Layer 8/9 256 3x3 L6/7 26x26x128 13x13x256* Y 2x2*

Layer 10 512 3x3 L8/9 13x13x256 13x13x512 Y N

Layer 11 1024 3x3 L10 13x13x512 13x13x1024 Y N

Layer 12 256 1x1 L11 13x13x1024 13x13x256 Y N

Layer 13 512 3x3 L12 13x13x256 13x13x512 Y N

Layer 14 45 1x1 L13 13x13x512 13x13x45 N N

Layer 17 128 1x1 L12 13x13x256 13x13x128 Y N

Layer 20 256 3x3 L8+2x2xL17 26x26x384 26x26x256 Y N

Layer 21 45 1x1 L20 26x26x256 26x26x45 N N

Table 1 : DK Tiny Yolo V3 Model Layers
Note that in the table, the Caffe layer descriptions for weights, batch normalization, scaling, biases, strides and
max pooling are all merged into single layers. This does create a complication at the output of layer 8 which is
used pre-max pooling by layer 20 as well as post-max pooling used by layer 10. However ignoring this issue,
which will be dealt with in the 3rd paper of this series, we can map the model to our dynamically configurable
DPU as follows:

Page 3ad-an-0116_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 26th April 2021

Layer Seq Runs Neurons
per Run

Neuron
Input Size Efficiency MACs

Layer 0/1 1 16 27 10.5% 74M

Layer 2/3 1 32 144 25% 199M

Layer 4/5 1 64 288 50% 199M

Layer 6/7 1 128 576 100% 199M

Layer 8/9 2 128 1152 100% 199M

Layer 10 4 128 2304 100% 199M

Layer 11 8 128 4608 100% 797M

Layer 12 2 128 1024 100% 443M

Layer 13 4 128 2304 100% 199M

Layer 14 1 45 512 35% 4M

Layer 17 1 128 256 100% 5.5M

Layer 20 2 128 3456 100% 598M

Layer 21 1 45 256 35% 7.8M

Table 2 : Model Layer Mappings
Table 2 shows how each layer in the CNN is mapped to the 128 neuron layer. For layers with less than 128
neurons, not all are used, lowering the efficiency of the hardware use for those layers. The number of features
input to each neuron (this is either previous layer number of neurons, or 9 times this for the 3x3 convolutional
layers) also affects the efficiency although only in the case of the first layer for this model. For layers larger than
128 neurons, sequentially re-running the input data through of 128 neurons is the approach used here allowing
the DPU to support larger CNN layers. The choice of a 128 neuron DPU is somewhat arbitrary, but does fit fairly
well here with most layers operating efficiently. Larger DPUs could be used, to improve parallization and
increase performance, but may be of lower efficiency for some layers in the network. Smaller DPUs may be
more efficient but have lower throughput potential. It may be possible to implement multiple DPU cores within
the same FPGA, and possibly a heterogeneous selection might allow for a more optimal solution for a particular
network. However even if 100% MAC efficiency can be achieved, the improvement will only be a a speed up of
1.46 as currently it takes the time for ~4571M MACs to process the ~3213M MACs required.

The 100% efficiency of neuron DSP use, only applies when processing. The configuration of the DPU layer by
uploading the weights will reduce this significantly. The impact of this down time can be reduced by batch
processing a number of frames, before reconfiguring the DPU, however as with any batch processing, this
efficiency gain is traded off for worse latency.

There are also a couple of simple operations that are not covered by the open source DPU at this stage and
these suggest features that could be added to enhance its capability. The first is the need for both the pre- and
post- maxpooling outputs of layer 8 to be used by later layers. This would be a simple fix to the code, allowing 2
output streams from the core to be sent to memory while the DPU runs this layer. This change is planned for
part 3 of this paper series, and so for now the simulation code actually runs layer 8 twice (one with and once
without the maxpooling option enabled.)

Another operation not covered is the rescaling of layer 17 output from a 13x13 size up to a 26x26 size so that it
can be processed by layer 20 along with the layer 8 output. This operation is not currently included in the DPU,
however a single line buffer should be able to repeat the data, then repeat the line to rescale the data up. In the
larger layers which require multiple sequential runs to complete, the output data needs merged. In the simulation
this is achieved by file manipulation, however in the FPGA implementation it is expected that the writes to
memory will be handled by a DMA engine, and this should be capable of striped writes which will write the output

Page 4 ad-an-0116_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 26th April 2021

for the 128 active neurons and skip over memory addresses the remaining neuron outputs for that layer.

Simulation of DPU using YoloV3 DK Tiny Caffe Model
The simulation of this DPU code is performed using a VHDL testbench which operates at a level of simulating the
surrounding FPGA infrastructure by provides data into the DPU core and recording the output of the DPU core by
means of flow controlled streams. In the real FPGA simulation these streams would be generated or received by
DMA engines handling the reads and writes to off-chip memory. However the details of how this works is not
included in this level of the simulation. Instead the source streams are read from files and the output streams are
written to files. The simulation can run across many layers in sequence, with the output files from one layer
being used by later layers as the input stream.

Configuration of the DPU is set dynamically in the file. This is driven directly by testbench signals. For the
FPGA implementation, these signals could be set by an internal CPU, and external CPU, or poissibly by a
custom state machine, which runs a program of DPU configurations. Once the dynamic signals are set, the
weights need to be uploaded to the DPU internal memory. This is also driven by a data stream, however in this
case, the data is read from a text version of the Caffe model. Fortunately in the Xilinx VitisAI Github repo is a
version of Caffe which allows easy export of Caffe model parameters in text format. The tools/binary_to_text
utility with the -remove_blobs option enabled will convert any Caffe model file into a text description easily parsed
by the VHDL testbench functions.

A VHDL library is provided with sub-programs capable of reading the exported Caffe model and outputting the
data as a stream of weights and biases for use by the DPU. The Caffe model has a weights layer, a batch
normalization layer and a scaling and biasing layer. For training the batch normalization layer values are based
on the batch processed. However for inference, these values are fixed from the output of the training. These 3
linear transforms can then mathematically collapse down to a single layer or weights and biases. The function
read_xcaffe_file in cnn_tools_pkg.vhd reads in the specified layer blobs, combines any layers and outputs a
stream of weights to configure the DPU to implement that layer.

The code is provided in the onelayerdpu_v1_0_0.zip file. This includes the VHDL source code as well as a data
and prj folders.

The main folder contains the files:
 cnn_tools_pkg.vhd
 dpu_core_tb.vhd
 dpu_core.vhd
 zero_pad_dynamic.vhd
 feature_buffer_dynamic_3x3.vhd
 conv_neuron_layer_drl.vhd
 conv_neuron_drl.vhd
 maxpool22_dynamic.vhd
 prog_length_sr.vhd

Note that the cnn_tools_pkg.vhd defines the data and weight aritmetic bit widths, which are set by default to 8
bits for the data and 16 bits for the weights resulting a DPU built with multipliers that form the 24 bit product of 8
bit data and 16 bit weights.

Packed in the data folder is the source data required for the simulation:

tmp_layer0-conv_filter.txt Simple Weight Only Text File for non-XCaffe simulation

input_data416x416.txt Arbitrary 416x416x3 image - not related to DK Tiny
training data

dk_tiny-yolov3_416_416_5.txt DK Tiny Caffe Model in Text Format : 19MB file

Table 3 : Data Files
Packed in the prj folder is a tcl script for generating a Vivado project for simulation and modification:
mkxpr-1ldpu-cnn.tcl

Page 5ad-an-0116_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 26th April 2021

This should be called from Vivado TCL command line, or used when launching Vivado from the command line:
> vivado -source mkxpr-1ldpu-cnn.tcl

This will create a Vivado project with copies of all the source files, which can then be edited within Vivado without
affecting the top level source. The GUI is launched and to start the simulation, it is simply a questions of selecting
run simulation. As supplied the code will run all layers (except for the layer 0 sim that does not use the Xilinx
Caffe model as that clashes with the other layer 0 sim). This simulation could take many hours to run, and for
better understading, it is better to run each section at a time by setting the enable constant in dpu_core_tb.vhd to
true or false as required. Note that although the input files for the simulation are stored and read from the data
directory, layer outputs, which become layer inputs for the next layers are stored locally in the Vivado project
simulation directory.

Figure 2 : Vivado GUI View of the Simulation

Page 6 ad-an-0116_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 26th April 2021

Figure 3 : Full view of the Simulation Waveform

Outputs of each layer can be visualized and analyzed in tools such as Matlab or Octave, with the following code:
>>x=textread('output_data2.txt');
>>q=zeros(4*208,4*208);
>>for k=1:4;
>> for l=1:4;
>> q(k*208-207:K*208,l*208-207:l*208) = reshape(x((k-1)*4+l:16:end),208,208);
>> end;
>>end
>>imagesc(q');

This code displays the 16 layer 0 neuron outputs in a 4x4 array, giving an indication of how the 1st stage of the
processing is operating as shown in figure 4. The input image is not related to the training set used to train the
weights extracted from the Caffe model, therefore it does not produce a distinctive result in layers 14 and 21 that
would indicate a known object and its bounding box. Unfortunately this limits the amount of evaluation it can be
used for with regards to the choice of weight and bias scaling and bitwidths selected.

Page 7ad-an-0116_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 26th April 2021

Figure 4 : Layer 0 Simulation Output

The complete simulation of all layers takes around 430ms to run, using the chosen 100MHz clock rate. This has
been chosen to make the simulation easier to read. For real deployment on a KU060 device the expected clock
rate could be between 200MHz and 400MHz depending on how easy it is to place the design. The
reconfiguration of the DPU, and re-writing of the layer weights in simulation has been set to take longer than
strictly required however minimising this will only improve performance by a few percent, and it is likely that the
core could operate at best at around 9 frames per second. Increasing the number of neurons in the DPU or
running multiple DPUs in parallel is an option to further increase throughput. Running synthesis, gives an
estimate of the FPGA resources required to implement this core. This indicates that the DPU requires around
8% of the KU060 block RAM and 5% of the DSP tiles, and so a 10-12 times rate speed up might be expected by
using multiple DPUs, although this may depend on what other functions the FPGA is required to perform. The
resource requirements will depend on the bit widths selected for the arithmetic, and the accuracy of the network
can be traded off with selecting lower bitwidths allowing more DPU performance per FPGA. However
investigating different bit widths is beyond the scope of this paper.

Page 8 ad-an-0116_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 26th April 2021

Figure 5 : Vivado Synthesis of DPU

Conclusions and Next Steps
The purpose of this paper was to introduce an Open Source DPU code suitable for implementation as part of a
Space FPGA solution using the Xilinx XQRKU060 device. This basic core has been described and the
simulation of it explained, including configuration using an off-the-shelf Caffe model from the Xilinx Vitis-AI Model
Zoo. This is however just the starting point for further investigation of this core, and its suitability (and the
suitability of FPGA based DPUs in general) for deployment in high radiation environments such as space. The
next paper in this series will cover the introduction of radiation effects mitigation techniques into the core,
primarily covering triple mode redundancy on control paths within the DPU.

Page 9ad-an-0116_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 26th April 2021

References
This section provides supplimental information for this document.

[1] A. C. McCormick AD-AN-0055: An Open Source FPGA CNN Library, Alpha Data, May 19, 2017

Page 10 ad-an-0116_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 26th April 2021

Revision History
Date Revision Nature of Change

26/04/21 1.0 First draft

Address: Suite L4A, 160 Dundee Street,
Edinburgh, EH11 1DQ, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

Address: 611 Corporate Circle, Suite H
Golden, CO 80401

Telephone: (303) 954 8768
Fax: (866) 820 9956 - toll free
email: sales@alpha-data.com
website: http://www.alpha-data.com

5.0

	Space Tolerant CNN FPGA Deployment, Part 1
	An open Source DPU Layer
	Structure of the Open Source DPU
	DPU Size Choices for YoloV3 DK Tiny Implementation
	Simulation of DPU using YoloV3 DK Tiny Caffe Model
	Conclusions and Next Steps

	Tables
	Table 1: DK Tiny Yolo V3 Model Layers
	Table 2: Model Layer Mappings
	Table 3: Data Files

	Figures
	Figure 1: Fixed Point Neuron Implementation
	Figure 2: Vivado GUI View of the Simulation
	Figure 3: Full view of the Simulation Waveform
	Figure 4: Layer 0 Simulation Output
	Figure 5: Vivado Synthesis of DPU

