
Space Tolerant CNN FPGA Deployment
V1.0 - 31st May 2021

Space Tolerant CNN
FPGA Deployment

Part 2: A Triple-Mode Redundant DPU

A. C. McCormick

Space Tolerant CNN FPGA Deployment, Part 2
This paper is the second part of a four part series of white papers providing an educational overview of the
issues surrounding the deployment of Convolutional Neural Network solutions on FPGAs in a radiation
susceptible environment. The first part documented a practical CNN processing core, which can be used to
implement a wide range of CNN solutions. This second part, discusses the Space Hardening of this core, adding
in Triple Mode Redundancy for radiation effect tolerance to control path circuitry. The third part will document the
higher level control structures necessary to move data to and from the CNN core and dynamically reconfigure its
operation to match the functional requirements of a part of a network. The fourth part of this series will document
the deployment of this FPGA solution on the Alpha Data ADA-SDEV-KIT3 Space Development kit for the Xilinx
XQRKU060 FPGA device.

Radiation Effects on FPGA Circuits
Radiation Effects on Integrated Circuits are widely understood and fall into a few key categories. Some result in
failures that actually physically damage the device, others may require power cycling to resolve, while others can
be mitigated dynamically. Total Ionising Dose is the level of radiation applied to the device over time that will
cause it to fail through unrecoverable physical damage to the device. Single Event Latch-up is less severe,
when a radiation event triggers a latchup of the circuit that typically requires the device (or part of) to be powered
off to recover. Sensitivity to these effects is generally characterized for any Space Grade device, and often extra
efforts within the design and manufacturing process are taken to improve the devices immunity to these effects.

With FPGAs however Single Event Upsets, where the logic level of a memory element in a register or SRAM
memory location is flipped by the radiation energy, are a significant risk to functionality. In FPGAs this can have
2 significant effects. Firstly the SRAM on the device is used to hold the configuration of the FPGA circuit and any
change to this will affect the circuit behaviour causing functional failure. Mitigating this requires the use of error
checking and scrubbing solutions which continuously verify and correct the configuration SRAM. These can be
most robustly implemented by an external device, but on-chip IP based solutions such as the Xilinx SEM IP
might be a sufficient option is some lower radiation situations. The second effect is the generation of random
logic errors generated within the FPGA logic circuit, when the SRAM used in the circuit has values flipped.
Randomly flipping bits within the circuit will affect its functionality and behaviour, and it is mitigation against these
affects that this paper will concentrate on.

Page 1ad-an-0117_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 31st May 2021

Fault Tolerance of Artificial Neural Networks
Fault tolerance is a known property of Artificial Neural Networks such as CNNs. This is partly due to the inexact
nature of the functions they learn to approximate, based on real life data, which can be noisy. There is also a
degree of redundancy in most trained networks (sometimes optimized away using pruning). Therefore bit flips
within the arithmetic of the CNN computation will have little or no observable effect on the classifcation or
decision reached. However most CNN implementations are not direct models of artificial neurons, but are based
around tensor processing cores, built out of multiply-accumulation units. Errors in moving the data around these
circuits are likley to be far more significant as data might get dropped, or the whole computation might drop out of
sequence, aligning the output decision with the data from the wrong input image. Therefore while there is some
scope for relying on the inherent fault tolerance of the neural networks, effort to ensure the control plane runs
error free is required.

Triple Mode Redundant Control Paths

Figure 1 : Triple mode Redundant Control Path

One widely adopted approach to high reliability FPGA design in Space based electronics is triple mode
redundancy. This technique effectively replicates the circuits in the design 3 times and then when a decision is
required, the majority result at each significant stage is used. A single error on any path should be out-voted by
the results from the 2 other paths. The disadvantage of this approach is that it requires 3 times the logic,
computational resources and power of the basic design. However in this paper we are going to exploit the fault
tolerance in the data path and only use the triple mode redundancy on the control paths in the design. Therefore
the design will not require 3x the number of DSP48 multipliers or Block RAMs for weight storage, however it will
require some additional logic for the data counters and other control and sequencing logic that tracks which
product is being computed for each feature and weight in an image.

TMR Data Types and a Library of Functions
For a practical but easily readable and comparable implementation, the approach adopted to implementing TMR
(triple mode redundancy) in this paper is to define new TMR data types in a VHDL package. These can be used
in place of the standard VHDL types by simply changing the signal type, resulting in code that is very similar to
the single mode source.

Within the example code, these new data types are captured in the package file tmr_pgk.vhd. A tmr_logic type is
defined to replace std_logic with a 3 element array. The tmr_logic_vector type is defined to replace the
std_logic_vector type widely used in the reference code. For numerical operations, the reference code used the

Page 2 ad-an-0117_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 31st May 2021

unsigned type from the ieee.numeric_std library and therefore a TMR equivalent tmr_unsigned type is defined to
replace these operations and signals.

The package defines a number of conversion functions between the TMR types and their basic single mode
equivalent. Creator functions, such as to_tmr_logic_vector replicate the single mode type 3 times. Resolution
functions (tmr_resolve) return the majority vote single mode type and other conversion functions such as
to_std_logic-vector allow extraction of one of the 3 paths.

Operator overloading is heavily used for these types with standard operations such as addition, subtraction,
multiplication and comparisons overloaded for the tmr_unsigned type to allow minimal changes from the
reference code. Boolean logic operators not, and, or are overloaded for the tmr_logic type.

Higher level abstract data types can cause issues for synthesis tools such as Xilinx Vivado which does not
seamlessly support 2-dimensional arrays such as those used for the tmr_logic_vector and therefore to allow
synthesis and simulation of a synthesized netlist of the module, with TMR signals at the top level, additional
flattening and unflattening functions are provided to convert each tmr_logic_vector to a std_logic_vector three
times the size to give a top level with standard types to be used in the netlist.

With these functions in place converting the reference code to a TMR enabled version is relatively straight
forward. In most cases the signal types are simply changed to the equivalent TMR type. At the top level
configuration signals are fed in as TMR signals (flattened when necessary), as this will help preserve the 3 paths,
and avoid any optimization that might occur. A few other changes are required to ensure that comparisons
always compare signals of the same size, but in general the changes are not hugely significant and the TMR
code resembles the original non-TMR code significantly. It is also very clear using this approach which signals
are under TMR protection, in this case the control path signals, and which signals are not, in this case the data
path for the weights and features of the network and the arithmetic operations and buffer storage used for the
network.

This TMR package and all the modified VHDL modules can be accessed from the archive
onelayerdpu_tmr_v1_0_0.zip and the code can be simulated and sytnthesized in a Vivado project that is built
using the prj/mkxpr-1ldpu-cnn-tmr.tcl script: vivado -source mkxpr-1ldpu-cnn-tmr.tcl

Note that the large Caffe text definition file for the network dk_tiny-yolov3_416_416_5.txt is not duplicated in this
.zip file and needs to be copied from the archive of source code for the first paper in the series:
onelayerdpu_v1_0_0.zip

Simulating a Radiation Environment
Simulation of radiation effects on the FPGA can be achieved in a number of different ways. The approach used
in this paper is to exploit the ability of the simulator to force signals within the design using the TCL command
add_force. This command is specific to Xilinx Vivado simulation, however other simulators support similar
commands. The TCL script rad_sim.tcl is provided to use this function to randomly generate bit flips on signals
in the design. This is called by the run_rad function which has 2 parameters specifying the number of iterations
and the running interval. This runs the simulation for the specified interval, and then calls the gen_rad_event
function. This is repeated for the specified number of iterations. The gen_rad_event function also defined in the
script reads the netlist of the simulated device under test, randomly selects a signal, with some exceptions, and
then flips a bit in this signal for 15ns (i.e. more than 1 clock cycle).

The run_rad function can therefore be used in place of the TCL run command to advance the simulation while
creating a number of random radiation like effects at the specified rate. For a quick demonstration of the issues
the radiation might cause, a high number iterations and low interval should be specified. Using run_rad with the
original reference design from part 1 of this paper series will quickly throw up errors in the processing, with
incorrect amounts of data output the most likely error.

One limitation of this is that the add_force command does not support multi-dimensional arrays. Therefore using
the behavioural simulation will actually give the tmr_logic_vector and tmr_unsigned types immunity from

Page 3ad-an-0117_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 31st May 2021

changes, which is unrealistic. Therefore to more accurately simulate the radiation effects on the triple mode
redundant version of the design, the simulation should be performed as a post synthesis functional simulation.

Synthesis and Optimization Issues
When synthesizing TMR circuits one important consideration is the optimization the tools apply to reduce the
logic used in a design. With a TMR design, there will be 3 identical copies of a circuit, and therefore it is very
easy for an optimization algorithm to spot this redundancy and remove the extra logic, reducing the circuit back
down to a single copy. The example code employs 2 strategies to avoid this. Firstly any input paramaters and
signals at the top level that need replicated are actually fed in replicated, with the configuration values expected
to be read in triplicate from external ECC DDR3 memory. This will avoid any possible redundancy optimization of
these signals within the synthised module, as the tool cannot identify them as identical. More difficult to preserve
are triple mode redundant registers defined deeper within the code however in these cases the replication is
explicitly maintained using the dont_touch attribute in the VHDL source code which should disable the
optimization for these paths.

Resource Estimation Available Utilization%

LUT 4905 331680 1.47883

LUTRAM 83 146880 0.056508712

FF 13756 663360 2.0736854

BRAM 86 1080 7.962963

DSP 130 2760 4.710145

IO 125 624 20.032051

BUFG 1 624 0.16025642

Table 1 : Reference DPU Resource Utiliziation

Resource Estimation Available Utilization%

LUT 17634 331680 5.31657

LUTRAM 83 146880 0.056508712

FF 24139 663360 3.6388988

BRAM 86 1080 7.962963

DSP 134 2760 4.8550725

IO 307 624 49.198715

BUFG 1 624 0.16025642

Table 2 : TMR Design DPU Resource Utiliziation
Tables 1 and 2 show the resource utilization for the original reference DPU core and the TMR design. This
shows that the TMR does increase the size of the core, in terms of LUTs by a factor of 3 and FFs by a factor of 2,
however it does not result in a significant increase in the more scarce BRAM and DSP usage, and therefore by
only applying TMR to the control path and not the data path implementing the fault tolerant neural network
computation, the requirement for resources does not increase across the board by a factor of 3.

Conclusions and Next Steps
This part of the paper has covered the subject of radiation effects on a Space deployable CNN implementation.
Common radiation effects on FPGA circuits have been discussed. The Triple Mode Redundancy mitigation
technique for mitigating soft single event upsets in the processing has been explored. The fault tolerance and

Page 4 ad-an-0117_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 31st May 2021

redundancy in the CNN weights and calculations has been exploited, to provide a circuit where only the control
plane signals get protected by TMR as bit errors in the CNN arithmetic operation are deemed as acceptable, and
unlikely to significantly affect operation. By using this approach, the resulting rad-tolerant circuit provides reliable
operation but without the cost of tripling the use of every resource on the FPGA deployed. This approach has
been tested in simulation, exploiting simulator level scripts to force single errors on signals within the circuit.

The first 2 papers in this series have concentrated on implementing a core IP block for CNN operations. The
next paper will concentrate on how to connect up this IP core to external resources such as DDR memory used
to store weights, features and intermediate results. The next paper will also cover the scheduling and control of
the DPU, using a state machine, that can read a sequence of descriptions from memory, which describe the DPU
configuration, the location of weights and data in memory and use these to control the DPU and transfer the
required data.

Page 5ad-an-0117_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 31st May 2021

Revision History
Date Revision Nature of Change

31/05/21 1.0 First draft

Address: Suite L4A, 160 Dundee Street,
Edinburgh, EH11 1DQ, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

Address: 611 Corporate Circle, Suite H
Golden, CO 80401

Telephone: (303) 954 8768
Fax: (866) 820 9956 - toll free
email: sales@alpha-data.com
website: http://www.alpha-data.com

5.0

	Space Tolerant CNN FPGA Deployment, Part 2
	Radiation Effects on FPGA Circuits
	Fault Tolerance of Artificial Neural Networks
	Triple Mode Redundant Control Paths
	TMR Data Types and a Library of Functions
	Simulating a Radiation Environment
	Synthesis and Optimization Issues
	Conclusions and Next Steps

	Tables
	Table 1: Reference DPU Resource Utiliziation
	Table 2: TMR Design DPU Resource Utiliziation

	Figures
	Figure 1: Triple mode Redundant Control Path

