
Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Space Tolerant CNN
FPGA Deployment

Part 3: DPU Control and Interfacing

A. C. McCormick

Space Tolerant CNN FPGA Deployment, Part 3
This paper is the third part of a four-part series of white papers providing an educational overview of the issues
surrounding the deployment of Convolutional Neural Network solutions on FPGAs in a radiation susceptible
environment. The first part documented a practical CNN processing core, which can be used to implement a
wide range of CNN solutions. The second part, discussed the Space Hardening of that core, adding in
Triple-Mode Redundancy for radiation effect tolerance to control path circuitry. This third part documents the
higher level control structures necessary to move data to and from the CNN core and dynamically reconfigure its
operation to match the functional requirements of a part of a network. The fourth part of this series will document
the deployment of this FPGA solution on the Alpha Data ADA-SDEV-KIT3 Space Development kit for the Xilinx
XQRKU060 FPGA device.

Data Movement From Memory to and from the DPU
With a flexible DPU-based solution for the CNN implementation, the low silicon footprint of the processor is
balanced by the need to store data for the network off-chip. This can be essential for large networks, with
memory footprints in excess of available on-chip memory resources. But even with smaller networks it can allow
a very compact solution. However, as the data needs transferred, from memory, the application becomes
memory bound. This applies to the weight configuration data of the network as well as the feature data for each
layer where the input and output need to be read from and written back to memory for each layer as it it
processed. With a single DPU implementing each layer in sequence, memory efficient techniques such as
passing the output of one layer directly as inputs to the next layer (possible with multi-layer hardware) is not an
option.

Moving data efficiently around is often one of the more tricky design tasks when using FPGAs. The
reconfigurability of the hardware can however allow near optimal scheduling of the data transfers, achieving very
high efficiency when correctly designed, providing one reason why FPGA designs can utilize a far higher
percentage of their theoretical computational capability than other silicon architectures with fixed memory access
infrastructure. The use of off-the-shelf IP cores can however simplify this design process. In this case the Xilinx
DataMover core is ideal for handling the reading of a chunk of data from memory and converting it to the stream
inputs required by the DPU for both weights and features. The DataMover IP core can also be configured to
write the output stream of data to a different address in the memory block. For intermediate network layers, this
will be used later as input features for the next layer. The DPU architecture selected, works most efficiently with
larger batches as the weights are read in first, with the feature data pushed through after, and therefore batching
allows many frames of features to be processed for each load from memory of the weight data.

DPU and Data Flow Control
To be really useful the DPU needs a higher level configuration and control structure. To handle the flexibility
required, this needs to be programmable. Therefore, a simple state machine, or processor needs to be included
in the design to perform the DPU configuration and schedule data transfers. To be programmable, each
instruction word must be stored in memory, and readable by the processor. A block diagram indicating the
connections between this control block, the DPU and the data mover cores is shown in figure 1.

Page 1ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

DPU
Controller

AXI
MUX

Instruction Word
Data Mover

Weights
Data Mover

Input
Data Mover

Output
Data Mover

DPU

Memory

Config

Start Address

Figure 1 : DPU Control and Data Flow Block Diagram

The processing unit implemented is based around using a 1024-bit instruction word, which contains all the
configuration data required to run many different layers. The following address map shows the format and fields
of this instruction word, with some space reserved at this stage for future use and will be used later to implement
some of the special features of the Yolo network. Fields provide the configuration of DPU layer features,
selecting ReLU or Linear operation, 3x3 input convolution or 2x2 MaxPool or stride operations. Fields also fully
specify the network layer the DPU is to implement in terms of numbers of features and neurons. Fields are also
used to control the DataMover IP, specify the start address and size of the weights and feature data to be read
in, and the size and location of the memory area for the results to be written to. To enable multi-layer and
continuous operation, the programme word also contains a next word address, which is loaded and processed
when the current layer operation is complete.

Page 2 ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Instruction Word Format

Register Address Description

DPU CFG 0x0000 DPU Configuration

WDM Command 0x0010 Command to send to Weights Data Mover

IDM Command 0x0020 Command to send to Input Stream Data Mover

ODM Command 0x0030 Command to send to Output Data Mover

Next Instruction Word 0x0040
Address and Control of Next Instruction Word to allow automatic
scheduling of next DPU layer operation.

Unused 0x0050 Reserved for Future Use

Unused 0x0060 Reserved for Future Use

Unused 0x0070 Reserved for Future Use

1024 bit Instruction Word format for DPU Controller, split into 8x128 bit sections.

DPU CFG (0x0000)

DPU Configuration

127:106 105:96 95:
90

89:80 79:
76

75:64 63:
62

61:48 47:
44

43:32 31:
30

29:16 15:4 3 2 1 0

R TR R AN R MPF R MPW R NF R FIW R S2 MP CO RE

Field Bit(s) Mode Description

ReLU (RE) 0 RW Use ReLU non-linearity

Conv 3x3 (CO) 1 RW Enable 3x3 convolution of input

Maxpool (MP) 2 RW Enable MaxPool Layer port Neuron Output

Stride 2 (S2) 3 RW Enable Stride of 2 across input data

Reserved (R) 15:4 RW Reserved

Feature Image Width
(FIW) 29:16 RW Width of Image

Reserved (R) 31:30 RW Reserved

Number of Features
(NF) 43:32 RW Number of Input Features

Reserved (R) 47:44 RW Reserved

MP Width (MPW) 61:48 RW Width of Max Pool Input

Reserved (R) 63:62 RW Reserved

MP Features (MPF) 75:64 RW Number of Max Pool Inputs

Page 3ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Field Bit(s) Mode Description

Reserved (R) 79:76 RW Reserved

Active Neurons (AN) 89:80 RW Number of active neurons

Reserved (R) 95:90 RW Reserved

Throttle Rate (TR) 105:96 RW Input rate flow control

Reserved (R) 127:106 RW Reserved

WDM Command (0x0010)

Command to send to Weights Data Mover

127:100 99:96 95:32 31 30 29:24 23 22:0

R TAG SA DRR EOF DSA T BTT

Field Bit(s) Mode Description

Bytes to Transfer
(BTT) 22:0 RW Size in bytes of the weights data

Type (T) 23 RW Set to 1 for AXI INCR address Operation

DRE Stream
Alignment (DSA) 29:24 RW Not used: Set to Zero

End of Frame (EOF) 30 RW End of Frame Command : Set to 1

DRE ReAlignment
Request (DRR) 31 RW Not used: Set to Zero

Start address (SA) 95:32 RW Start address of the weights data

Command TAG
(TAG) 99:96 RW Command TAG for Data Mover

Reserved (R) 127:100 RW Reserved

IDM Command (0x0020)

Command to send to Input Stream Data Mover

127:100 99:96 95:32 31 30 29:24 23 22:0

R TAG SA DRR EOF DSA T BTT

Field Bit(s) Mode Description

Bytes to Transfer
(BTT) 22:0 RW Size in bytes of the input feature data

Type (T) 23 RW Set to 1 for AXI INCR address Operation

DRE Stream
Alignment (DSA) 29:24 RW Not used: Set to Zero

Page 4 ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Field Bit(s) Mode Description

End of Frame (EOF) 30 RW End of Frame Command : Set to 1

DRE ReAlignment
Request (DRR) 31 RW Not used: Set to Zero

Start address (SA) 95:32 RW Start address of the weights data

Command TAG
(TAG) 99:96 RW Command TAG for Data Mover

Reserved (R) 127:100 RW Reserved

ODM Command (0x0030)

Command to send to Output Data Mover

127:100 99:96 95:32 31 30 29:24 23 22:0

R TAG SA DRR EOF DSA T BTT

Field Bit(s) Mode Description

Bytes to Transfer
(BTT) 22:0 RW Size in bytes of the output data

Type (T) 23 RW Set to 1 for AXI INCR address Operation

DRE Stream
Alignment (DSA) 29:24 RW Not used: Set to Zero

End of Frame (EOF) 30 RW End of Frame Command : Set to 0

DRE ReAlignment
Request (DRR) 31 RW Not used: Set to Zero

Start address (SA) 95:32 RW Start address of the weights data

Command TAG
(TAG) 99:96 RW Command TAG for Data Mover

Reserved (R) 127:100 RW Reserved

Next Instruction Word (0x0040)

Address and Control of Next Instruction Word to allow automatic scheduling of next DPU layer operation.

127:65 64 63:0

R NIV NIA

Page 5ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Field Bit(s) Mode Description

Next Instruction
Address (NIA) 63:0 RW Size in bytes of the input feature data

Next Instruction Valid
(NIV) 64 RW Set to 1 for AXI INCR address Operation

Reserved (R) 127:65 RW Reserved

Unused (0x0050)

Reserved for Future Use

127:0

R

Field Bit(s) Mode Description

Reserved (R) 127:0 RW Reserved

Unused (0x0060)

Reserved for Future Use

127:0

R

Field Bit(s) Mode Description

Reserved (R) 127:0 RW Reserved

Unused (0x0070)

Reserved for Future Use

127:0

R

Field Bit(s) Mode Description

Reserved (R) 127:0 RW Reserved

Page 6 ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Figure 2 shows the flow chart of this DPU control module. When given a start address, it fetches the instruction
word located there. This then configures the dynamic parameters of the network, before triggering a read of the
weights from memory. Once these have been read into the DPU internal memory, the processor triggers both
the result write back and feature reads. Once the last output word is written, the processor checks for a
follow-on start address, and if one is present, it fetches and processes the word there.

Start

Wait for Address Write

Read Instruction Word

Configure DPU

Start Weight DataMover

Start Output DataMover

Next Instruction
Word Valid

Weight
Config Finished

Output
(and Input)
Data Mover

 Finished

Start Input DataMover

Y

Y

N

N

N

Address Set

Y

Figure 2 : Flowchart for DPU Control

The Vivado simulation of this DPU control and data movement is demonstrated by the project that can be
generated by TCL script dpuwrapper/prj/mkxpr-1ldpu-wrap.tcl. This builds a project with a top level, the DPU, the
dpu controller and all the data movement infrastructure and a simulation memory - pre-initialized with data to
implement a few basic CNN layers.

Page 7ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Support for YoloV3 Layers
To implement the YoloV3 network requires some features beyond that supported in the basic DPU controller
simulated in this first project. The first additional feature required to be supported is networks with more neurons
than the DPU contains. This is implemented by running different groups of neurons effectively as independent
layers sequentially in time. However, to output the data as a contiguous region suitable for use by the next layer,
rather requiring a re-arrangement of data after the DPU runs for the different sections of the network have
completed, a write striping modification to the output write DataMover, allows the data to be only written once into
the correct format. This striping is easily implemented by splitting up the write commands to memory into
contiguous stripes of data, for all neurons for each pixel, followed by an address jump to the start address for the
next pixel, and thus the output from each stage gets interleaved together into the correct order.

The second YoloV3 feature required is the output of both layers 8 and 9, that is with the same convolution
operation, but before and after the MaxPool operations. Since the DPU feeds the MaxPool operation directly
from convolved neuron outputs, this data is not automatically written to memory. The basic DPU controller could
support this by running the layer twice, once with MaxPool disabled and once with the MaxPool enabled.
However, as the pre-maxpool data is available when the MaxPool is enabled, the alternative approach taken
here is to slightly modify the DPU to allow this data to be output as a stream. The DPU wrapper then has a
second write DataMover IP core implemented to simultaneously write this data to a different area of memory.

The third YoloV3 special feature comes in with Layer 20. This takes in the layer 8 output that the second write
output can be used to capture and merges it with the output of layer 17. Layer 8 is 26x26 in size whereas layer
17 is 13x13 and therefore some rescaling of the data from layer 17 is also required for merging. To support all
these requires a few extra logic blocks. An additional DataMover is required to read from a second memory area
concurrently. The layer 17 data needs a re-scale expansion operation to replicate each pixel, up to 2x2 pixels.
This involves a small memory buffer to output each pixel twice, and then repeat each line. Finally, these 2
streams need merged in sequence to form a single stream to feed into the DPU.

The YoloV3 network required a few small changes to the dataflow to implement special operations. Many other
networks may require some special fixes to solve such issues, and this can make a fully general purpose DPU
difficult to design. One solution, if an embedded CPU is available, is simply to apply the original software
operation directly on the data in memory. As these operations are often of low computational complexity this
may be the most flexible solution. But many of these operations can be solved with simple streaming operations
on the existing data requiring only minor customizations of the DPU logic and its wrapper, with potentially a very
low logic cost which may be preferrable to a CPU patch, which could slow throughput due to the required number
of memory operations. A block diagram of the control and data flow for this enhanced DPU is shown in figure 3.

Page 8 ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

DPU
Controller

AXI
MUX

Instruction Word
Data Mover

Weights
Data Mover

Input
Data Mover

Output
Data Mover

DPU

Memory

Config

Start Address

Output 2
Data Mover

Input 2
Data Mover

RescaleStream Merge

Figure 3 : YoloV3 DPU Control and Data Flow Block Diagram

The modified DPU wrapper project to support these extra features can be built with the scripts dpuwrapper/prj/
mkxpr-1ldpu-wrap2.tcl and dpuwrapper/prj/mkxpr-1ldpu-wrap2a.tcl. The difference between these 2 projects is
the data image in memory. In the first case, the simulated memory block is identical to the previous simulation
and this simulation run only validates that these extra changes do not affect the previously demonstrated
operation. In the second project a more complex memory image is built up in the simulation memory, including
data to simulate the layers 8,9 and 20 that require these new features.

The field definitions for the enhanced instruction word format used for this more complex DPU controller are as
follows:

Page 9ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Enhanced Instruction Word Format

Register Address Description

DPU CFG 0x0000 DPU Configuration

WDM Command 0x0010 Command to send to Weights Data Mover

IDM Command 0x0020 Command to send to Input Stream Data Mover

ODM Command 0x0030 Command to send to Output Data Mover

Next Instruction Word 0x0040
Address and Control of Next Instruction Word to allow automatic
scheduling of next DPU layer operation.

IDM2 Command 0x0050 Command to send to Second Input Stream Data Mover

YoloV3 Misc 0x0060 Miscellaneous functions to support YoloV3 specific layers

ODM2 Command 0x0070 Command to send to Second Output Data Mover

1024 bit Instruction Word format for DPU Controller, split into 8x128 bit sections.

DPU CFG (0x0000)

DPU Configuration

127:106 105:96 95:
90

89:80 79:
76

75:64 63:
62

61:48 47:
44

43:32 31:
30

29:16 15:4 3 2 1 0

R TR R AN R MPF R MPW R NF R FIW R S2 MP CO RE

Field Bit(s) Mode Description

ReLU (RE) 0 RW Use ReLU non-linearity

Conv 3x3 (CO) 1 RW Enable 3x3 convolution of input

Maxpool (MP) 2 RW Enable MaxPool Layer port Neuron Output

Stride 2 (S2) 3 RW Enable Stride of 2 across input data

Reserved (R) 15:4 RW Reserved

Feature Image Width
(FIW) 29:16 RW Width of Image

Reserved (R) 31:30 RW Reserved

Number of Features
(NF) 43:32 RW Number of Input Features

Reserved (R) 47:44 RW Reserved

MP Width (MPW) 61:48 RW Width of Max Pool Input

Reserved (R) 63:62 RW Reserved

MP Features (MPF) 75:64 RW Number of Max Pool Inputs

Page 10 ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Field Bit(s) Mode Description

Reserved (R) 79:76 RW Reserved

Active Neurons (AN) 89:80 RW Number of active neurons

Reserved (R) 95:90 RW Reserved

Throttle Rate (TR) 105:96 RW Input rate flow control

Reserved (R) 127:106 RW Reserved

WDM Command (0x0010)

Command to send to Weights Data Mover

127:100 99:96 95:32 31 30 29:24 23 22:0

R TAG SA DRR EOF DSA T BTT

Field Bit(s) Mode Description

Bytes to Transfer
(BTT) 22:0 RW Size in bytes of the weights data

Type (T) 23 RW Set to 1 for AXI INCR address Operation

DRE Stream
Alignment (DSA) 29:24 RW Not used: Set to Zero

End of Frame (EOF) 30 RW End of Frame Command : Set to 1

DRE ReAlignment
Request (DRR) 31 RW Not used: Set to Zero

Start address (SA) 95:32 RW Start address of the weights data

Command TAG
(TAG) 99:96 RW Command TAG for Data Mover

Reserved (R) 127:100 RW Reserved

IDM Command (0x0020)

Command to send to Input Stream Data Mover

127:100 99:96 95:32 31 30 29:24 15:12 22:0

R TAG SA DRR EOF DSA T BTT

Field Bit(s) Mode Description

Bytes to Transfer
(BTT) 22:0 RW Size in bytes of the input feature data

Type (T) 15:12 RW Set to 1 for AXI INCR address Operation

DRE Stream
Alignment (DSA) 29:24 RW Not used: Set to Zero

Page 11ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Field Bit(s) Mode Description

End of Frame (EOF) 30 RW End of Frame Command : Set to 1

DRE ReAlignment
Request (DRR) 31 RW Not used: Set to Zero

Start address (SA) 95:32 RW Start address of the weights data

Command TAG
(TAG) 99:96 RW Command TAG for Data Mover

Reserved (R) 127:100 RW Reserved

ODM Command (0x0030)

Command to send to Output Data Mover

127:104 103
:100

99:96 95:32 31 30 29:24 23 22:0

CC R TAG SA DRR EOF DSA T BTT

Field Bit(s) Mode Description

Bytes to Transfer
(BTT) 22:0 RW Size in bytes of the output data

Type (T) 23 RW Set to 1 for AXI INCR address Operation

DRE Stream
Alignment (DSA) 29:24 RW Not used: Set to Zero

End of Frame (EOF) 30 RW End of Frame Command : Set to 0

DRE ReAlignment
Request (DRR) 31 RW Not used: Set to Zero

Start address (SA) 95:32 RW Start address of the weights data

Command TAG
(TAG) 99:96 RW Command TAG for Data Mover

Reserved (R) 103:100 RW Reserved

Command Count
(CC) 127:104 RW Number of times to repeat command with address increment

Next Instruction Word (0x0040)

Address and Control of Next Instruction Word to allow automatic scheduling of next DPU layer operation.

127:65 64 63:0

R NIV NIA

Page 12 ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Field Bit(s) Mode Description

Next Instruction
Address (NIA) 63:0 RW Size in bytes of the input feature data

Next Instruction Valid
(NIV) 64 RW Set to 1 for AXI INCR address Operation

Reserved (R) 127:65 RW Reserved

IDM2 Command (0x0050)

Command to send to Second Input Stream Data Mover

127:100 99:96 95:32 31 30 29:24 23 22:0

R TAG SA DRR EOF DSA T BTT

Field Bit(s) Mode Description

Bytes to Transfer
(BTT) 22:0 RW Size in bytes of the input feature data

Type (T) 23 RW Set to 1 for AXI INCR address Operation

DRE Stream
Alignment (DSA) 29:24 RW Not used: Set to Zero

End of Frame (EOF) 30 RW End of Frame Command : Set to 1

DRE ReAlignment
Request (DRR) 31 RW Not used: Set to Zero

Start address (SA) 95:32 RW Start address of the weights data

Command TAG
(TAG) 99:96 RW Command TAG for Data Mover

Reserved (R) 127:100 RW Reserved

YoloV3 Misc (0x0060)

Miscellaneous functions to support YoloV3 specific layers

127:112 111:96 95:64 63:48 47:32 31:1 0

O2I O1I R RC2 RC1 R RE

Field Bit(s) Mode Description

Rescale Enable (RE) 0 RW Reserved

Reserved (R) 31:1 RW Reserved

Rescale Feature
Count 1 (RC1) 47:32 RW Number of features from IDM to use

Rescale Feature
Count 2 (RC2) 63:48 RW Number of features from IDM2 to use

Page 13ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Field Bit(s) Mode Description

Reserved (R) 95:64 RW Reserved

ODM Address
Increment (O1I) 111:96 RW Address increment for striping ODM writes

ODM2 Address
Increment (O2I) 127:112 RW Address increment for striping ODM2 writes

ODM2 Command (0x0070)

Command to send to Second Output Data Mover

127:104 103
:100

99:96 95:32 31 30 29:24 23 22:0

CC R TAG SA DRR EOF DSA T BTT

Field Bit(s) Mode Description

Bytes to Transfer
(BTT) 22:0 RW Size in bytes of the output data

Type (T) 23 RW Set to 1 for AXI INCR address Operation

DRE Stream
Alignment (DSA) 29:24 RW Not used: Set to Zero

End of Frame (EOF) 30 RW End of Frame Command : Set to 0

DRE ReAlignment
Request (DRR) 31 RW Not used: Set to Zero

Start address (SA) 95:32 RW Start address of the weights data

Command TAG
(TAG) 99:96 RW Command TAG for Data Mover

Reserved (R) 103:100 RW Reserved

Command Count
(CC) 127:104 RW Number of times to repeat command with address increment

Triple-Mode Redundant Operation
As this wrapper is primarily control logic for the DPU, to work with the TMR enhanced version of the DPU, this
part of the design should also run in a triple-mode redundant mode. This can be achieved in a relatively straight
forward way by instantiating 3 copies of the logic. Where three copies of the control signals are required, these
are directly fed through to the DPU. The triple - signals to and from the memory interface are resolved within the
core to provide a standard AXI interface out to external logic.

A simulation project to test out these changes to the design can be built using the script dpuwrapper/prj/
mkxpr-1ldpu-wrap3.tcl

Page 14 ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Conclusions and Next Steps
This section of the paper has described the higher level configuration and control of the DPU core, which along
with the DataMover IP allows the core to be configured, controlled and fed with data from an AXI-accessible
memory block. Enhancements to the basic structure to efficiently support network-specific special features have
been added, to allow the DPU to implement certain layers of the YoloV3 network. The implications of
Triple-Mode Redundancy on this part of the design have also been briefly discussed.

The fourth and final section of this paper will take the DPU core, the wrapper control and data flow IP and
provide a deployable implementation. This will primarily consist of providing AXI access to an external DDR3
memory bank, register access to allow the start address to be set, and external access by PCIe to allow the
DDR3 memory to be loaded with the DPU instruction word programs and weight data for different layers. The
DDR3 also needs to be accessible to load the images to be processed by the network, and to output the results.

Page 15ad-an-0118_v1_0.pdf

Space Tolerant CNN FPGA Deployment
V1.0 - 12th Oct 2021

Revision History
Date Revision Nature of Change

12/10/21 1.0 First draft

Address: Suite L4A, 160 Dundee Street,
Edinburgh, EH11 1DQ, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

Address: 10822 West Toller Drive, Suite 250
Littleton, CO 80127

Telephone: (303) 954 8768
Fax: (866) 820 9956 - toll free
email: sales@alpha-data.com
website: http://www.alpha-data.com

5.0

	Space Tolerant CNN FPGA Deployment, Part 3
	Data Movement From Memory to and from the DPU
	DPU and Data Flow Control
	Instruction Word Format
	DPU CFG
	WDM Command
	IDM Command
	ODM Command
	Next Instruction Word
	Unused
	Unused
	Unused

	Support for YoloV3 Layers
	Enhanced Instruction Word Format
	DPU CFG
	WDM Command
	IDM Command
	ODM Command
	Next Instruction Word
	IDM2 Command
	YoloV3 Misc
	ODM2 Command

	Triple-Mode Redundant Operation
	Conclusions and Next Steps

	Figures
	Figure 1: DPU Control and Data Flow Block Diagram
	Figure 2: Flowchart for DPU Control
	Figure 3: YoloV3 DPU Control and Data Flow Block Diagram

